480 ATAA JOURNAL

to the first Vlasov-type equation:
[B6°/12(1 — u)]AAw + (1/1 — wAMz — D& — ¢ (7)

where

po L2 (lh2), 0 (1ho)]
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The function ® is not arbitrary, since it must lead to dis-

placements that are compatible. The condition of com-
patibility is given by (Ref. 3, p. 28)
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Substitution of Egs. (2, 4, and 6) into Eq. (8) then yields
EéDw + AA® + ANz =0 9)

where some higher order terms have been neglected. Egs.
(7) and (9), together with appropriate boundary conditions,*
can be used to cbtain approximate solutions for thermoelastic
problems of thin shells.
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Total Heating Load on Blunt
Axisymmetric Bodies in Low-Density

Flow

J. Lurta Porrer* anp Joun T. Miuer!
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Nomenclature
Go = heat transfer rate at stagnation point
Gorm = p,Ux?/2 = approximate stagnation point rate for
free molecular flow
Gave = average heat transfer rate based on surface area
Gave rm = average rate for free molecular flow
U = velocity of freestream
Peo = density of freestream
R = radius of body = radius of curvature for hemisphere
Re, = poUoR /12
e = viscosity immediately downstream of normal shock
H, = total enthalpy of freestream
Hy = enthalpy corresponding to body surface conditions
(AU /ds) = “‘inviscid” velocity gradient at stagnation point
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IS is a report of total heating rates of blunt, axisym-

metric noses in a low-density, hypersonic wind tunnel.
Minimum stream density was such that Knudsen number
based on nose radius and conditions immediately behind the
normal portion of the bow shock exceeded 0.1. Thus, scaling
on the basis of Knudsen number, a body of 1-ft nose radius at
a maximum altitude above 315,000 ft was simulated.

The LDH wind tunnel,! in operation at the von K4rmdn
Gas Dynamies Facility of the Arnold Engineering Develop-
ment Center, was used to obtain the data presented. Al-
though calorimetry data show thermodynamic equilibrium to
exist at the throat of the nozzle, computations? show molecu-
lar vibration to be essentially frozen downstream of the
throat when nitrogen is the medium. A similar calculation
indicates that vibration remains frozen throughout the shock
layer, but temperatures corresponding to the active and inert,
degrees of freedom are nearly equal on the stagnation stream-
line immediately downstream of the bow shock. It is as-
sumed that the portion of the total enthalpy represented by
vibration in the present case contributes to heating of the test
bodies. Inasmuch as the total temperature was below that
at which nitrogen dissociates, no recombination chemistry was
involved. When argon was used as the medium, it was as-
sumed that it behaved as a perfect gas, although excitation to
a metastable state occurred. ’

Talbot? has shown that the electrical potential of a probe
in an ionized stream is an important factor in determining the
heat transfer to the probe. As a precaution, all the results
presented herein were obtained with the probe grounded with
respect to the tunnel wall.

The models consisted of hemisphere-cylinders and flat-
faced cylinders. Total heat flux (Btu/sec) to the noses was
measured. This was converted to average heat transfer rate
per unit area, d.v, Btu/ft2-sec, by dividing total heat flux by
the wetted area of the nose. Deseriptions of the models and
other details may be found in a test report.* :

A problem arose in the comparison of the measured aver-
age values with theories presented for stagnation point heat
transfer because the theoretical distribution appropriate to
the flow conditions is not available in all cases. This left no
recourse except the assumption that one of the theories for
thin boundary layers (high Reynolds numbers) may be used
to obtain the relation between average and stagnation point
heating rates at very low Reynolds numbers. This was done
by assuming that Lees’ distribution® was valid for the case of
the hemispheres. For the case of the flat-nosed models, the
distribution computed by Vinokur® was used. The relations
inferred from these distributions are

Nose shape go Gojm = PulUx/2
Hemisphere® 2.50 Gave 2.00 Givg tm
Flat face® 0.756 Gave Gave fm

The experimental results are presented in Fig. 1 and, in the
case of the hemisphere, compared with theories for low-density
flow.

Behavior of the data appears qualitatively in agreement
with results of the most appropriate theories. There is an
indication that the data at the lowest values of Re, on Fig.
1a depart from the extrapolated, theoretically derived curves.
First, it should be noted that the data extend to Reynolds
numbers lower than are compatible with the flow models as-
sumed for theoretical analysis. Second, the earlier remarks
on the relation of average rates to stagnation point rates may
be relevant. The hemisphere tested in argon yielded results
in good agreement with theory, as shown in Fig. 1b.

The constant-density, subsonic flow field on which the
heating rate distribution of Ref. 6 is based cannot be valid
at Reynolds numbers where a fully merged shock layer exists
for a highly cooled body. Thus, scme of the difference be-
tween theory and experiment seen in Fig. 1¢ would be expected
for this reason. '
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Fig. 1 Average heat-transfer rate parameter: a) hemi-
sphere in nitrogen; b) hemisphere in argon; c¢) flat-face
in nitrogen
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Approximate Solution of the
Energy Equation

Joux Finro*
Syracuse University, Syracuse, N. Y.

Introduction

‘N a previous paper by Bush,! it has been shown that the
incompressible and compressible laminar boundary layer
equations may be solved by an approximate method, namely,
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Table 1 Wall temperature gradient

Pr = Pr= Pr= Pr= Pr= Pr=
0.7 1.0 2.0 5.0 10 20

B =0 0.408 0.467 0.589 1.015 1.241 approx.
vy =0 0.407 0.470% 0.582 .. 0.986 1.230 exact
B =1 0.468 0.536 0.949 approx.
vy =0 0.488 (.560 1.011 ... exact
B8 =

1.6 0.483 0.556 ...  approx.
v =0 0.506 0.583 ... exact
B=0 ... 1.547 ...  approx.
y=1 ... 1.625 exact
B =1 .. (0.801 ...  approx.
v =1 0.812 exact

2 See Ref. 1

an iteration procedure. It is the object of this note to extend
this method to the solution of the laminar boundary layer
energy equation for wedge-type flow with variable wall
temperature.

Analysis

The appropriate energy equation for the type of flow and
wall temperature mentioned previously is

d‘)

+Pf ~P@~m7fw—n W

with the boundary conditions
=0 =0 > w: =1 2

where 8 determines the wedge angle, v is the power to which
the wall temperature is raised, and Pr is the Prandtl number.
Denoting df/dn by w, Eq. (1) becomes

&0 _ o ‘
dnt —Pr an wdm + Pr2 — B)vyw(d — 1) (3)

This equation may be solved by iteration by intfoducing a
suitable approximation for # in the right-hand side. De-
noting the resulting solution by @, one has

dZG do 7
ar = fo wdny + Pr (2 — Bvw(d — 1) (4)

The first integral of this equation is

G = gp [ pm g )
o fn Prd—m(fo wdm)dm—fn PrX
2= Byw® — 1) dy (5)

The second integral of this equation is

G(n) = f i [f Pr — i <f 2 'Wd‘ﬂs) d’?z] _‘ v
fo17 dm I:fm Pr (2 — B)yw(6 — 1) dm:l (6)

satisfying the boundary condition G(0) =
If the approximating functions w and # are

erf(an) a = const (7a)
6 = erf(by) ~ b = const (7b)

I

w

then the first integration, Eq. (5), yields the temperature
gradient at the wall for = 0:

dG’(O)

an Prll + (2 — 8)v] I:

(1 + m)vz — 1]m _¢ g
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